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ABSTRACT

Various properties of elliptically polarized waves and
antennas are investigated by utilizing a complex vector
method. Well-known relations derived for linear polarization

pear as special casesof more general relations for ellipti-
cal polarization. A geometrical representation of complex
vectors provides acorresponding geometrical interpretation
of many of the results obtained. Elliptically polarized fields
are resolved into "orthogonal" elliptically polarized compo-
nents, of which linear and circular components are special
cases.

Formulas are obtained relating to the polarization ellipse,
the polarization pattern, ellipticity, phase, and sense of
polarization. A unit complex polarizationvector and complex
transmission and reception vectors are introduced to repre-
sent respectively the state of polarization of a given field,
the field transmitted, and the voltage received. With the aid
of these vectors, the transmitting and receiving properties
of antennas are obtained.

The notions of radiation pattern, gain, beamwidth, and
phase are examined. Measuring techniques involving linearly
polarized and circularly polarized field components are
discussed andcompared for accuracy., A power transfer
equation between two elliptically polarized antennas is ob-
tained in terms of the gains and polarization characteristics
of the two antennas, and is applied to special cases.

PROBLEM STATUS

This report concludes the work on this phase of the
problem. Work continues on the basic problem.

AUTHORIZATION

NRL Problem No. R09-31R
NR 509-310
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ELLIPTICALLY POLARIZED WAVES AND ANTENNAS

DUCTION

ecently there has been considerable interest in elliptically polarized waves and
ninas. Various aspects of the subject have been treated independently by members of
nna Research Branch and by others.! The principal purpose of this report is to
yailable a comprehensive and unified treatment of the subject. In addition, many
few egiults not previously published are presented.

In an effort to avoid ambiguities, complex vectors and scalars are represented by
cript symbols, and real vectors and scalars by print symbols. Departures from this
otgtion occur only when there is a conflict with generally accepted notation.

“The report is divided into two parts, the first devoted to theory and the second to
easurements,

] éeneral Principles--Complex Vector Representation of Elliptically Polarized Fields

A uniform elliptically polarized plane wave may be defined as a wave of the form

Et) = £t - kz)

’

vhere € is a complex vector of the form

" €= E, + jE; , (1)

d E_ and Ei are real vectors perpendicular to the z-axis and independent of position and
tme l;I‘hus a uniform elliptically polarized wave is obtained by the superposition of two

| Wmiform linearly polarized plane waves, which are in phase quadrature and which are

y tl"iwel(ling in the same direction. There is clearly no loss of generality in assuming that

[ e direction of propagation is in the direction of the z-axis. ‘

————

1A joint paper b
Provide the read

y the authors and others to appear in the Proceedings of the I.R.E,
er with additional information and with other points of view.

488 vil




2 NAVAL RESEARCH LABORATORY

It can readily be shown that the wave € (t) can be expressed in the form
g(t) - C’ej(&)t - kz + 6)

?

wl?ere = E' + ]E'1 and E;, - E{ = 0. The angle § and the vectors E} and E} are detery!
mined by the equations

| - .
.. . % 2 _ @2 .
tanzd-zEr Ei/(Er Ei) ,
;,=Ercos6 +Eisin6 ,
E; = -f)r sin § + Ei cos &

Thus an elliptically polarized wave can also be regarded as the superposition of two lin- n;
early polarized waves which are in both time and space quadrature.

To see why such a wave is described as elliptically polarized, consider the locus of &
the termini of the instantageous E-vectors drawn through a given point in space, where #
E =Re g(t). Since E} and E! are orthogonal, wg can choose orthogonal x- and y-axes &
through the given point and in the directions of E!, and E! respectively. Then we may

i write E;‘ = Ex i_and E; = E_ 1, where 1; and Tr are unit vectors in the directions of
‘ the x- and y-axe’é. Equation (y2)¥nay be expresse& in the form
) - T iR Thldt +6) ‘
) = (Ex i+ ]Ey 1y)e : (3)
then - - -
E = Excos(wt + 4 )ix - Eysin (¢ut+6)iy

The coordinates of the terminus of E are givenby x = E coswt + 6 ) and y =
-Ey sin (wt + §), so that
2 R 2 2
x/Ex+y/Ey—1
Thus the locus is an ellipse with axes in the directions of E’ and ﬁ', and with lengths of
semi-axes of | E;‘l and | E!| . This ellipse is called the poxiarizatlon ellipse. The ratio -
of the major to the minor 4xis is called the ellipticity of polarization.

Since in considering the locus of the terminus of the E-vector at a given point only
. the variation with time was involved, it follows that if at any given point in space an arbi-
tary vector function of the time is given by .
U = UM - @+ Oyt 4)
then the locus ¢f the terminus of the vector which is the Re 7 t) = ﬁ(t) is an ellipse lying;
in the plane of Ur and Ui' In passing, it might be pointed out that any vector of the form "

U= Ux cos( éx +¢.ut)ix + Uy cos( 6y +wt)1y + U, cos(d, + wt)1z )
describes an ellipse, since such a vector may be expressed in the form of Equation (4) a8

‘ ﬁ:Re[{UX cos éxi:( + Uy cos dy*i;, + U, cos dz’i;}

i . . ; - : - jwt
i + ]{Ux sin &, x * Uy sin dy iy + U, sin 6, 1Z}]e

-
1




NAVAL RESEARCH LABORATORY 3

positive normal is assigned to the plane of the polarization ellipse of E(t), the
on is defined as right-handed or left-handed according as the vector is rotating
vise or counterclockwise when viewed by an observer looking in the direction of the

?,1 In the case of an elliptically polarized plane wave, the positive normal is usual -
in the direction of propagation.

an arbitrary pair of orthogonal unit vectors ;; and*i;, are selected in the plane of
then U(t) may be expressed in the form

2y - Tyt
Ut) = (ux i+ Zly 1y)e » (5)
A_ and U_ are complex. Since an elliptically polarized wave is often expressed in
ové{ form, %ve shall derive a criterion for determining the sense of rotation of ﬁ(t).

= | ie. = 6, .
of two lip. = | % e ¥y and uy l%le y ; then
U(t) = luxl coswt + dx)lx + luyl cosfwt + d_y)iy .
he locus of enote the angle that U(t) makes with 1. and let the positive direction of 8 be from
‘e, where
Then lu cosfwt + )
y-axes y y
tan 0 =
ve may 5)
ctions of Uy| coswt + ¢,
!
=(_7Y {cos(dy - Jx) + sin(c)x - dy) tant + 6x) } ,
(3) x
2. de U . 2
sec @ — =w, Y |sin(d - § ) sec +6).
= «Jﬂ; (6, - ) sec’t + 4 )
. do <rs : . . . .
t is seen that ar is positive or negative according as sin(é_ - 4_) is positive or
ve. If the unit normal 1 to the plane of U(t) is chosen in sudh a w‘éy that the vectors
n form a right-handed system when taken in the indicated order, then the polariza-
lengths of right-handed or left-handed according as sin(&x - 8_) is positive or negative, or in
The ratio words, according as the Xx-component of U(t) leads o lags the y-component.
a of Complex Vectors
oint only ;
ace an grbi- /' The use of complex vect

! ors in representing elliptically polarized waves suggests the
psgibility of using a complex vector algebra in studying such waves. An appropriate

ra, which will be used in the subsequent discussion, will now be outlined.

)

, 3 A complex vector is defined as a vector of the form
1lipse lying

f the form U= Er + §U;

'z d Ei being real vectors which in general are not in the same direction. As has been
t a given point in space, U(t) = Re(Ur + jUi)ej“‘ describes an ellipse. The direc-

1ation (4) as 1of rotation. of U(t) may be indicated by means of an
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In general, a complex vector determines a plane, namely the plane of ﬁr and §, 1.
the discussion which follows it is assumed that the complex vectors under considéra{i 4
lie in parallel planes unless. otherwise indicated. 0

The scalar product of two complex vectors, U= Er + jﬁi and V= Vr + jVi is de.
fined as

L o

- - b -~ > I brs
U V= (Up- Ve - Up - V) +j(U; - Vp o+ Tp - V).

Their vector product is defined as

— e e

ﬂx7=(ﬁrx7r-uixvi')+] L x ViU V),

-~ > y - Tk — - ;‘
The_magnitude of U is |2 | = U. U, Two vectors, U and ¥, are said to be orthogona) §
if 'Ll- * = 0, and parallelif UxV = 0. y

It is not difficult to show that the conditions of orthogonalit% and parallelism are
equivalent respectively to the two relations =%, % * xfHand ¥ = & 2 &, Where the &
are constants, These relations have an interesting geometrical intg_rprgtation. As in
Equation (2), ?‘iej“’t may be expressed in the form T eJwt = (ﬁ§’+ §U§) ellwt + %), where
f and Uf are a pair of orthogonal real vectors in the plane of U. From this form, and
%e criterion for sense of rotafion, it is at once evident that the ellipse determined by
* glwt gﬁ' - jU) el@t - ) has the same orientation and ellipticity as that deter-
mined by efwt, but has the opposite sense. It is also clear that T¢* T is o%tained by
rotating L7 through 90° in the plane of 4. Thus two complex vectors ¢ and ¥ are or-
thogonal if and only if the ellipses which represent them have the same ellipticity, op. .
posite sense of rotation, and major axes perpendicular. From the relation which expressg
the condition of parallelism it is seen that ¢ and % are parallel if and only if the ellipses]
representing them have the same orientation, ellipticity, and sense of rotation.

Resolution of Elliptically Polarized Fields into Orthogonal Elliptically Polarized
Components

If 5 is an arbitrary complex vector, and if Z and 17 denote an arbitrary pair of com
plex orthogonal unit vectors in the plane of E, then € may be represented in the form

E=(C.om=Zs (E.om> }

-— —
:814_% +€/M/‘lf

. From the orthogonality of 2 and 77, it follows that

,Elz = I&AI 2 +'8rvr'2 . (7)

From Equation (6) we conclude that a given elliptically polarized field can be resolved}
into two orthogonal elliptically polarized fields in an infinite number of ways. The ellipt
ity, orientation, and sense of the ellipse representing one of the component fields can
arbitrarily specified, in which case the other component field will be represented by an
ellipse having the same ellipticity, opposite sense, and having its major axis perpendicu<j
lar to the major axis of the first. Equation (7) states that the power density in an ellipti- 4
cally polarized wave is the sum of the power densities of any two orthogonal, elliptically?
polarized components. 5
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Consider several special cases of Equation (6). I « and v are real, then the compo-

" pent fields represented by £, % and €, are linearly polarized. It follows from Equation
ne g ar Yy
X

(3) that £ may be expressed in the form € = (Ex +jE I)ej". Now lety and Vbe a

pair of real unit orthogonal vectors making an angle ¢ witly 1xyand T)', respectively. Then

- PR j6
&, =(Egcos ¥+ Ey sin¥)el ,

€y - (-Egsin ¥+ j Eg cos¥)eld

If ¥ is chosen so that |&u|2 = ’£v|2 , then (E; - E;)cos 2¥ = 0. Thus [€a] =& ] i

P =—’4r—or —%Eas is obvious from the geometry of the polarization ellipse.

From the above results we conclude that an elliptically polarized field of arbitrary
ellipticity and sense of rotation can be produced by superimposing two orthogonal linearly
polarized fields for which either (a) the two components are in phase quadrature and the
amplitudes are properly chosen, or (b) the two components are equal in amplitude and the
phase is properly chosen. In the first case, the axes of the ellipse will be in the direc-
tions of the two components which are in phase quadrature, and in the second case, the
axes of the ellipse will bisect the angles between the two components of equal amplitude.

The resolution of an elliptically polarized field into right- and left-handed circularly
polarized components is of considerable importance. Let € be represented in the form of
Equation (5), :

13 i

E = Ex + & 8

x*Cyly
A pair of right- and left-handed circularly polarized unit vectors may be selected as

—

b= @ - 1)V
and ..R :-{ ’y
. L = i i
L= g +11)/V2
Applying Equation (6), Equation (8) may be written
= 1 e T Ty e e T
5—2(€x+16y)(ix 11y)+2 (€ JEY)(IXHIY)

St A+ & ®)

From th¢ discussion of the conditions for orthogonality and parallelism it is evident
that a pair of right- and left-handed circularly polarized vectors are always orthogonal
and two circularly polarized vectors of the same sense are parallel, provided the same
unit normal T is used in determining the sense of polarization. Hence if 'R and L
denote any'other pair of right- and left-handed circularly polarized unit vectors, then
¥R =IiReld and 'L = LLeid’. From Equation (6) we see that- £ = (& .Z*R) TR +

«F'*L)¥L. But (E.7*R) TR = (€ Zi*re-19)el0 IR = (£ J*R)IPR, and similarly
(& I*1 )", = (£ . T*L)IL. Thus the component vectors on the right of Equation (9)
are independent of the particular choice of right- and left-handed circularly polarized
unit vectors, or in other words, the resolution into right- and left-handed circularly
Polarized fields is unique. It is clear also that {&’R[= |ER/| and le] = |5L|.



4@_&#]@%3%@’—?“ i = = 5 - 1 e = -

s positive or negative according as|Ep, | is greater or less than | € | . Thus boty the'

(] NAVAL RESEARCH LABORATORY.

Since the vectors which are the real parts of GRER elt and 8LzL elwt rotate ini

% osite directions with constant magnitudes |€ R| and |& | , it is seen at once that .
rmax = [€bR| +|€1,| and Tﬁ min = IER| - |€LI". Hence the ellipticity of polarizatio'n,

y §

e, is given , 2
e="&R|+lSL|/I8R|'|8L I - (1

It is easy to show that € is right- or left-handed according as,_lenl__is greater or‘
less than | & 4: It is only necessary to observe that unit yectors ix and iy can be detes ]
mined so tha{" takes the form of Equation (3), = (Ex ix - jEyTy) elb', where Ey 3/l
|Ey | . Then from the criterion for sense of rotation, & will be right- or left-handeg
Ey is positive or negative. Since |Eg | = V‘%IEX +Ey|and |€] | = V_21_|Ex - By|, £§

ellipticity and sense of rotation of an elliptically polarized field are determined when
magnitude of the right- and left-handed circularly polarized components are known. &

It is interesting to note that whenever a complex‘ug_it'vector z det’erminés a circu-
larly polarized vector, then the vector determined by Zeld is obtained by rotating the %
former through an angle § in the direction in which it is rotating. This is apparent whep?

one considers that a circularly polarized vector rotates with constant angular velocity u
Significance of the Term Phase Applied to Elliptically Polarized Fields

Although the primary concern in this paper is with elliptically polarized fields and 4
antennas, it seems appropriate at this point to consider the question of what is meant by
phase. Some confusion exists which seems to stem from the fact that the term phase wail
defined originally in connection with scalar quantities, but has been used without adequati
definition in dealing with vector quantities. One method that has been suggested for treat;
ing this subject is to consider the phase of the components of a vector field, since the 1
components are scalar quantities. While such an approach would be perfectly valid, it |
would make the phase dependent on the coordinate system, and in general such a defini- §
tion would have doubtful physical significance. Another approach, which the authors t
favor, is to refer the field at each point in space to a unit vector in the direction of the E

y.ﬁ

Figure 1 - Phase change upon reflection
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eld. Thyus if Zis a unit vector in the direction of E, énd we write E = C;Z, then the
nase of . may be defined as the argument of the complex amplitude &, .

A simple illustration may help to make these points clear. For example, one often
pears the statement made that if a uniform plane wave is incident on a perfectly conduct-
g infinite plane at an oblique angle, then at every point of the plane the incident and re-
“flected E-vectors are 180° out of phase. This statement is true only if properly inter-
~preted- For the sake of simplicity let us assume the E-vector ig in thg_ plane of incidence.
§ the incident and reflected waves are referred to unit yectors uj and up as shown in

e 1, then it is true that the incident and reflected E-vectors differ in phase by 180°
t the points of reflection. On the other hand, if one considers the phases of the x- and y-
omponents, then the x-components are 180° out of phase, but the y-components are in
hase upon reflection.

. In the case of linearly polarized fields, if the suggested definition of phase is em-

; ioyed, there will be an ambiguity of 180° ) in the determination of the phase, which must
| pe resolved by some other means. For if u is a real unit vector in the direction of E,
then so is -U. In the case of elliptically polarized fields the ambijguity is even greater.
“For if ZZis any complex unit vector, thenu' =wueld is parallel toZ for an arbitrary .

| This means that the phase of € can have an infinite number of distinct values, depending
- on the choice of <. By a suitable choice of « it is possible, however, to reduce the

| gmbiguity to one of 180°. If we let 1z and I{ be in the directions of the major and minor
axes respectively of the ellipse which represents C , then a suitable vector.« may be

[ defined with the aid of a parameter, o, by the equation

l—

/&:Sinaix-jcosai.y . : ‘ (11)

can then write € = lélw e)0 | and define & to be the phase of € . Physically, this
tion of phase leads to the result that if twg elliptigally polarized fields represented

, and C , are in phase, the real vectors E, and %2 assume th%ir maxirpum and

inimum lengths at the same instants of time. On the other hand if C ; and C , differ in

‘phase by 90C, the length of one is a maximum whenever the length of the other is a mini-

. For phase differences other than a multiple of 90° the situation is more complicated.

Tt should be noted that the definition of phase that has been suggested applies equally well

| to linearly and elliptically polarized fields. For fields that are circularly polarized this

' definition of phase still leads to ambiguous results since in this case the vectors i, and y

an be chosen in an infinite number of ways.

For future reference it may be noted that Wh%l_l “ is<e§grressed in the form of Equa-
on (11), a can always be chosen in the interval -2 a 2=~, ande = |tan @|. M1, I,
rm a right-handed system, then « is right- o'i‘ left-hanﬁ polarized according as o ig

 the first or Second quadrant.
fiscellaneous Relations -

.. Before turning to the subject of antennas, a few relations of interest in connection
ith measurements will be derived. Assume that a dipole is rotated in the plane of polari-
on of an elliptically polarized field. Let a pair of orthogonal real unit vectors i, g_d
be chosen arbitrarily in thig plane. Then by a proper choice of the origin of time
be expressed in the form € = E, I ¢l4 4+ E 1 , wherg E, and E, are positive.
et the dipole make an an%e Y with iy; then the coxXpo%ent of & ifi the difection of the
v’n;‘.letis &'ﬁ = E, cos Yeld o Ey sin ¥ . The power received by the dipole is propor-
nal to - ‘



. and Ey , then it can be shown that Equ%tlon (13) can be used to determine the ellipticityr
‘simply by replacing Ey and Ey by | E; |

8 NAVAL RESEARCH LABORATORY,

2, 2 . , |
I&p' = fx cos’ ¥ . Ey sin®V ;. 2 ExEy sin ¥ cos ¥ cos 8
2 :

=?1{E; + E; + (E; - Ey)zcos 2¢4+ 2 ExEyz co_g é sin 2 lﬁ} , (12);}

2 2 2 2 2 2 !

='§[Ex + Ey +{(Ex + Ey) -4 Ex Ey sin § } cos(zw-ﬁ)]

where
tan f= 2 E E, cos ¢ /(EZ - E;).
Thus ‘
€= Iﬁwlmﬂ/leﬂmm 1
e= [(1 + cos n)/(1 - cos n)] = cot L. ’ (13)
2
where

: 2 2
sin 7 =2 ExEy sind /(€ + Ey) |
In the special case where Ex = Ey, Equation (13) becomes e = max{ , tan —g- ,,

l cot —g— ,}

The use of Equation (13) for determining the ellipticity involves the phase difference
¢ between the two components. A direct measurement of § may be avoided, however,
either by measuring the maximum and minimum components or by measuring any three
component amplitudes. For example, if one substitutes ¥ = 7 /4 in the second of Equa-
tions (12), the value of 2 Ex%r cos & - and hence the value of (2 Ex_liiy sin § ) may be ob-
tained. : .

Equation (13) determines the ellipticity when the two given components of the field
gre in space quadrature but differ in phgse b% an an%le §. It may happen that the field is
expressed in the form of Equation (1), C = E_ + j i~ In this case we have two compo-
nentgchh are in time quadrature. If we denote by & the angle between the vectors E

and | Ey | respectively.

From Equations (12) it is evident that the angle ¥ for which |C°/¢,| is a maximum,
gatisfies the equationtan 2 ¥ = tan B = 2 Exl-‘g, cos 6 /(Ei - E2). In order for |8¢, to
pe a maximum, ¥ must be chosen so that one 6f the two inequalities (Ei - E¥)cos 2¥>0,
or EgEycos 8 sin 2¥>0 is satisfied, These relations determine 2the angle ¥ Which the
major axis of the ellipse makes with iy. In the event that Ei = E; and cos 8 = 0, then
the field is circularly polarized and | is constant. If the rela¥ion between &V/ 2 and
¢ givenin Equations (12) is plotted in polar coordinates, a dumbbell shaped curve is ob-
tained which represents the power received by the dipole as a function of the angle of
orientation, Y. This curve is called a polarization pattern.

The polarization pattern may be obtained from the polarization ellipse by means of
the geometrical construction shown in Figure 2. The instantaneous magnitude of the volt-
age received by the dipole is proportional to the projection of the rotating E-vector upon 2
line parallel to the direction ¥ of the dipole. Referring to Figure 2, let Q be the point on
line PQ such that the normal to PQ at Q is tangent to the ellipse. It is evident that the
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e

um value of Ey, regarded as a ¥ Y‘ b
etion of time, is represented by PQ. y SO
. the rms value of the voltage is It
. l‘.‘o'portional to the maximum value of ‘
% .the length PQ can equally well be
“sﬁ'&,w represent the rms value of the
voltage. The locus of the point Q is a
: pbell shaped curve which coincides
 gith the polarization eilipse at the ends
+f its diameters. The polarization pat-
tern is obtained by plotting the square
of the radius PQ as a function of V. It
ig also dumbbe}l shaped for all values
of ellipticity greater than unity. It
should be noted that the polarization
patiern is not obtained by squaring the
corresponding radii of the polarization
eliipse. Notice, however, that the ratio
of the maximum value to the minimum
value of the polarization pattern is ;
equal to the square of the ratio of the v
major axis to the minor axis of the po- ‘
larization ellipse. Hence measured i
values of the ellipticity e are frequent- . o
ly taken from polarization pattern Figure 2 - Geometrical relation between the ‘ 5
measurements. (See Figure 4.) curve of received voltage and the polariza-
: tion ellipse

Relations Involving Elliptically Polarized
Transmitting and Receiving Antennas

Let u%now consider the relation of elliptically polarized fields to antennas. The dis-
tant field C(P, t) produced by an antenna can be expressed in the form

E®,Y = 3(%,15) oWt - kR) | ' (14)

where € (9,¢) is a complex vector, and R, 0, and @ are the spherical coordinates of the
point P. If the factor 1/R is omitted, the variation of the remaining factor along a radius
is identical with that of an elliptically polarized plane waye travelling in the (9, g) direc-
tion, It is convenient to introduce a complex unit vector p= P (9, ) defined by the rela-
tion

t

50,0 - Ee.0/Een . (1)

From the foregoing discussion it is clear that %3 completely describes the state of polari-
zation of the field, that is, the ellipticity, sense, and orig_ntation of the ellipse which

represents the instantaneous E-vector. For this reason P shall be referred to as the
polarization unit vector.

i Another vector ;}Jhich will be useful in describing the transmitted field of an antenna ..
8 }




NAVAL RESEARCH LABORATORY

50,0 = V66,0 69
_(zmyerm /2 EIE @O £OO a

where G(8,§) is the power gain of the antenna in the direction (8, #), and P, is the trang
mitted power. This vector will be referred to as the transmission vector of the antenng
The significance of becomes apparent when, with the aid of Equations (15) and (16)

»

Equation (14) is rewritten in the form

E .4 = (VITE /2 VB, ?gﬂg_‘@

10

Since for a lossless antenna 1 'Pt is proportional to the voltage at the input terminals ot"-
the antenna, it is seen that the transmission vector may be used to express the radiation
field of an antenna in terms of the input voltage in much the same way that the gain may i
be used to express the power per unit solid angle in a given direction in terms of the '
power delivered to the antenna. 1t follows immediately from the definition of ' ?’/, that

\%Q, ) \ ? = G(8, g) . (18)

By analogy with the case of linearly polarized antennas, we shall also define a vector 5,
T = ]YV (0, §) by the relation 4
/%,(Q, ¢) = ()‘/' 477) 77*(9, ¢) . (19)

This vector will be referred to as the reception vector of the antenna. If we denote by A ¢
= A(0,#) the receiving cross-section of the antenna, then we see from Equation (19) that |

‘]V(gy¢)‘ ? = (X2/47r) G,8) = A0, 9) ) (20)

It is shown in Appendix %that if gn tenna receives power from an incident ellipti-
cally polarifd plane wave (t) = EeX%, then the complex received voltage is given by
3 *. If the receiver is matched to the line which has an impedance Z, and if

V=HE-
the rezflection coefficient presented to the line by the antenna is I, then | 7| o= Z,(1
-‘ r \ ) V€7;l /2 The power received by the antenna is given by

2 2 by 2
p. =|V]| /2 Z =-§-(1 -\ r|) vem .\6 ./T*\
If both the receiver and antenna are matched to the line, then
1 — -
Pr =—2—‘V€;[1 \&'/A/*
Let 1{7/- be the polarization unit vector of the incident field, E, and let ?be the unit

vector, W\. Note that % is the conjugate of the polarization unit vector of the wave
which would be transmitted by the antenna. Then the expression for P, takes the form

v, -1 vl A VAN

roduct of two unit complex

2

As is the case with real vectors, the magnitude of the scalar p

vectors cannot exceed unity. The factor I;?ﬂi will be called the polarization efficienc;
and will be denoted by f. The factor 3 \/27;1 C" represents the power per unit area in
the incident field and will be denoted by S. Substituting in the formula for P, and remem-
pering that | 4 |° = A, we obtain the formula
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P.=SAf ) (21)

ase where the incident and transmitted fields are both linearly polarized the fac-
is given by f = cos? ¥, where V is the angle between the incident and transmitted
ptors. When ¥= 0, Equation (21) reduces to the well known formula for the maxi-
power received by a linearly polarized antenna, (Pr)max = SA.

The relations above make it possible to define the polarization efficiency in physical
#ns. The polarization efficiency is the ratio of the power received from an incident

ld in a given state of polarization to the power received when the polarization of the

ident field is adjusted for maximum power received, the power density in the incident
being heid constant.

 parameters which describe the incident field and the receiving_antenna. It follows

m Equation (20) that the vectors which represent Re fe¥t and Reg«el“’t are rotating in
ite directions when viewed from the same point, and that the ellipses described by

vectors have the same ellipticity and orientation. However, if the positive normal

e plane of Z points toward the antenna, and the positive or(nal to the plane f'ﬁ points

y from the antenna, then the sense of polarization of Re%ej,“"t + kR) and Re 7 ejlwt - kR)

he same. In other words the sense of polarization of Re/ el(wt + kR) is the same as

.of the field which would be transmitted by the receiving antenna in the given direction,

'i‘he vector Elies in a plane perpendicular to the (0, #) direction. In this plane a pair
ogonal unit vectors i, iy may be chosen so thatt takes the form of Equation (11),

€ = IEI (sin o4 f;( - j cos a4 ’i;,)ejdi

’

d another pair of orthogonal unit vectors Tx" E;v may be chosen so thatZ takes the
7 71 - . =, jé

- A= |.A| (sin ap igr - j cosa, 1y.)e] r

' The ellipticities of £ and .4 are given by e =

s <0"i < 3w = -
‘ly, where T Top = T Using the above expressions for £ and .4, we find after some

| tan a; | and e, = , tan o, | respective-

~ manipulation that !

. -— a2 1142 | |2
. 't‘;.,ﬁ, *| ,=?{ 8, I//vl {1 + sin 204 sin 204, + cos 2 cos 2a, cos -2¢1},
- where  is the a’r_‘gle between ’i;{, and*i;(. Thus the polarization efficiency, f, is given by

f =—; {1 + sin 204 sin 20y, + cos 2¢¢ cos 2ar cos 2y } . (22)

In terms of the :ellipticities e; and e, of the incident and transmitted fields, f is given by

‘i (1+ef)1+e?)+4 eig + (1 - ef)(1 - e?)cos 29
4(1+ef) (1+e2)

- Where the + or - sign of the term 4 e e. is to be used according as the two fields have
the same or opposite sense of polarizatidn.

, . (29)
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If the recelving antenna is rotated about an axis in the (9, ) direction, then only the

angle . will vary, and the relative maximum and minimum values of f are attained from
the Equation (22) when ¥ = 0 and g_ respectively. We thus find that

f

MIH N'H

{1 + cos 26 - ar)} = cos?y - a;)

max

f

{1 - €08 20y + ar)} = sin® (o +ay) . (24)

min

If these results are interpreted in terms of the states of polarization of the incident field
and of the field which would be transmitted by the receiving antenna in the given direc-
tion, it is seen that only the relative orientation of the ellipses representing the two
fields is varied and that f assumes its relative maximum and minimum values when the
major axes of the two ellipses are parallel and perpendicular respectively.

If sense of polarization is considered in addition to variable ¥, then both fmax and
f1nin of Equation (24) will have two values, the greater or lesser value according as the
two senses of polarization are the same or opposite respectively.

Finally, if the orientation of the ellipses, the ellipticity, and the sense of polariza-
tion are all allowed to vary, f will have an absolute maximum value of unity when the
major axes are parallel, the ellipticities are equal, and the polarizations are of the same
sense; and f will have a minimum value of zero when the major axes are orthogonal, the
ellipticities are equal, and the polarizations are of the opposite sense. This last case
may be expressed very simply in vectox _language: the polarization efficiency f has an
absolute maximum value of unity when & is parallel to % , and a minimum value of zero
when ¥ is orthogonal to 4. It follows that if the incident field is resolved into two.com-
plex vector components, -one of which is parallel to.% and the other orthogonal to Z:, all
the power received by the antenna will be extracted from the parallel component, the
orthogonal component being completely rejected. In the case of linearly polarized fields,
when a particular direction of polarization is of interest, a component of the field which
is orthogonal to this direction is said to be a cross-polarized component. It is clear that
this notion may be extended to elliptically polarized fields, two elliptically polarized
components being regarded as cross-polarized if they are orthogonal. Thus, for example,
if we consider a circularly polarized field of a given sense, the circularly polarized com-
ponent of the opposite sense may be regarded as the cross-polarized component.

If the factor { is plotted as a function of ¥ in polar coordinates, a graph is obtained
showing the variation of received power with the orientation ¥ of the receiving antenna.
A comparison of Equation (22) with Equations (12) shows that in both cases the functional
dependence on ¥ is of the same form, the two differing only in the constants involved.
Thus, whether a linearly or an elliptically polarized receiving antenna is used, the varia-
tion of received power with orientation angle ¢ will be represented by the same type of
dumbbell shaped curve. The curves for the two cases will differ in the orientation of
their axes and in the ratio of the major to minor axis.

h
is
b
St
th
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URING TECHNIQUES
.ement of Polarization Characteristics

o obtain a complete description of the radiation characteristics of an elliptically
jzed antenna, it is necessary to measure not only the distribution of radiation inten-
a function of direction but also the polarization characteristics as well. Two

»ds that have been used in the Antenna Research Branch for measuring polarization
acteristics are outlined in the following paragraphs: one method employs a rotating
ly polarized antenna; the other employs two circularly polarized antennas. \

ly polarized radiation pattern is to explore the far field with a dipole or some
all linearly polarized antenna. That is, for each considered direction (9, §), the
—or received is measured as a function of the orientation of the receiving dipole as it
rotated in the plane normal to the direction of propagation. To reduce the labor in-
lved, a special mount and associated circuitry are used. This equipment is shown in

perating condition in Figure 3. The antenna under test is used for transmitting, and the

Figure 3 - Equipment for the measurement
of polarization characteristics

3 values of O and § are controlled there. The receiving antenna, usually a small horn, is

- fastened on the special mount so that the axis of its main lobe, the axis of rotation of the

g ,'hOl‘n, and the line of sight between the two antennas are coincident. The received signal

- is displayed on a PPI scope or on a meter. For qualitative measurements the horn is

| - rotated rapidly enough to allow the display of the signal on the scope. The face of the

- 8cope may be fitted with a specially ‘calibrated transparent chart for the measurement of
the ellipticity e and the orientation angle { of the major axis of the polarization ellipse.

tating Linearly Polarized Antenna - An obvious way to make measurements on an '
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Figure 4 - Polarization patterns on the scope for:
(A) Linear polarization
(B) Elliptical polarization
(C) Circular polarization

Photographs of polarization patterns on the scope for linear, elliptical, and circular 1
polarizations are shown in Figures 4A, B, and C. For more accurate work, the rotation ]
is made slow enough to permit a meter to follow the signal as detected. It is then neces- -
sary to record only the ratio of the maximum signal to the minimum signal, and the
value of ¥. .

The equipment shown in Figure 3 is intended for use indoors for making measure-
ments on low gain microwave radiators. For measurements outdoors on high gain an-
tennas, the Antenna Research Branch finds it convenient to have the rotating linearly
polarized antenna transmitting. Due to the large separation between transmitting and
receiving sites, the orientation of polarization is controlled remotely at the receiving
site.

Two Circularly Polarized Antennas - The second method utilizes the fact that an
elliptically polarized field can be represented by two circularly polarized components of
opposite sense of polarization. The antenna under test is transmitting, as before. Two
circularly polarized antennas are used for receiving, and are assumed identical in their
impedance and pattern characteristics except for sense of polarization. If the same re-
ceiver with a square law detector is used with both antennas, the received signals are
proportional to the square of the quantities |C g I and |€1| which appear in Equation
(10). The ellipticity may then be calculated from this equation. The sense of polarization
will be right- or left-handed according as |& Rl is greater or less than IF/LI

For many applications, the two circularly polarized antennas could be two helices®’? 3

2 Marston, A. E., and Adcock, M. D., "Radiation from Helices, ' NRL Report
3634 (Unclassified), March 8, 1950

3Kraus, J. D., and Williamson, J. C., "Characteristics of Helical Antennas
Radiating in the Axial Mode," J. Applied Physics, 19:87-96, January 1948
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@ opposite senses. If desired, a single antenna®’ *with two pairs of terminals for
ing the right-and left-handed circular components of the incident field may be used.

mparison of the Two Methods - The two methods do not yield directly the same
tion, since the first does not give the sense of polarization, while the second does
the orientation angle, ¥. With suitable modifications either method may be made
id all the required information, but the techniques will not be discussed here.

rom patterns of the test antenna obtained by receiving separately on each of the two
arly polarized antennas, one may easily calculate not only the ellipticity but also
iation intensity as a function of direction. In general, however, it is much simpler
ain the single linearly polarized antenna than to obtain the pair of right- and left-
d circularly polarized antennas. Moreover, as will be shown in the following para-
hs, measurements of ellipticity with a linearly polarized antenna will, in general, be
re accurate than measurements with a pair of circularly polarized antennas. Thus,
#.accuracy and for simplicity of instrumentation, the first method employing a linearly
Jarized antenna is preferable; for ease in obtaining ellipticity and radiation intensity as
ction of direction, the second method is preferable provided the accuracy obtainable
sufficient. X

. In order to compare the accuracy of the two methods for measuring ellipticity, the
following assumptions are made: (1) The existence of a cross-polarized component® in
the receiving antennas, taken alternately to be a maximum of either 25 db, 30 db, or 40
db'below the desired component; (2) a difference in antenna gain between the two "circu-
larly"” polarized antennas of at most 0.3 db; and (3) errors in meter reading of at most
0.1 db.

Details of the derivation of the formulas for errors in the measured value of elliptic-
ity are given in Appendix II. The results are shown in Figure 5. The ellipticity in db as
calculated from measurements is referenced on the horizontal scales. The maximum
‘deviations of the true value of the ellipticity from a measured value, resulting from the
three types of errors assumed above, are referenced on the vertical scales. The param-
eter for the two sets of curves is the db difference between the desired component and
the cross-polarized component, referenced in Figure 5 as p. These values of the param-
~ eter are realistic, since the small horn and the two helices used as the receiving an-
tennas in the two methods possessed cross-polarized components about 30 db down from
the desired components.

To illustrate the use of the graph, assume that p= 30 db and that a value of ¢ = 3 db
, is calculated from measurements on a test antenna. Then it is seen from Figure 5 that
- the true value q{ e lies between 2.6 db and 3.4 db if linear components are used and be-
. tween 2.3 db and 3.8 db if circular components are used. It is obvious from Figure 5
| that linear components give more accurate results than circular components for all
. values of e plotted, admitting the errors assumed above.

B e —
I'Chait, H. N., "An Arbitrarily Polarized Antenna for use on X-Band, " NRL Report
R-3416, March 15, 1949

®Chait, H. N. , '"Microwave Antenna for Arbitrary Polarization, ' Electronics
(process of publication)

®In the case of circular polarization, this is the component of the opposite sense.
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i
The distant field £ P, t) of any antenna is given by Equation (14). Denoting by &, a.nd i
9.« the components of in the direction of an arbitrary complex unit vector Z,

follows from Equation (17) tha
|€L|? = YuT/e Pt|7,,,,|'/27r R’
2
Let P, (0,0) =-—;—Ve7u R '6,,'2 and G, (0,0) = 47 P, ((),(J)/Pt denote respectively
the power pér unit solid angle and the gain associated with the component £, . Hence
|g.F = 47 B, 0,0)/P; = G, (6,9)
If a complex unit vector /7 is chosen so’that « and -~ are orthogonal, then
2 2 2
g =1gel” + 1 gnl

By Equation (18), |7/|2 = G(6,8), where G(0,#) is the power gain relative to an isotropic §
radiator in the direction (9, #). Hence

G(0,9) = G, (8,0) + G, (0,0) , (25)

and it is seen that the gain G(0, §) is the sum of the gains of any two orthogonal componentig d
Equation (25) may also be expressed in the form 3

GO, 9) = 41r%a;(o, ) + Put@, m} /Py = 47P(©, 9)/Py . 1
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The recommended procedure in the experimental determination of the power gain of
elliptically polarized antenna is summarized below. The simplest pair of orthogonal
‘eomponents is chosen, namely, linear. The test antenna whose gain function is to be
jotermined is used as a receiving antenna.

1. Orient the linearly polarized transmitting antenna so that maximum signal is
received for an arbitrary orientation of the test antenna.

2. Orient the test antenna so that the direction (9, @) in which the gain determination
is desired coincides with the line of sight between the two antennas. This direc-
tion is usually chosen as the direction of maximum gain. The received signal is
proportional to the gain of the linear component of the test antenna which is par-
allel to the E-vector of the transmitting antenna, assuming, of course, a square
law detector.

3. Rotate elther the transmitting or the receiving antenna exactly 90° about their
line of sight. The received signal is proportional to the gain of the orthogonal
component,

4. The power gain in the chosen direction is proportional to the sum of these two
components. The gain may be determined absolutely by direct comparison with
a calibrated linearly polarized gain standard in precisely the same manner as in
the case of linearly polarized test antennas.

Definition of Beamwidth - When considering elliptically polarized antennas, one may
be interested not only in the radiation pattern showing the "total' power per unit solid
angle but also in patterns showing power per unit solid angle associated with a particular
component. To any one of these patterns, the term beamwidth may be applied in the usual
way. In general, of course, both the patterns and beamwidths will differ from component
to component. Therefore, in speaking of ""the" beamwidth of an elliptically polarized an-
tenna, one should indicate clearly which pattern is referred to.

Measurement of Power Transfer

The equation for the power transfer between two elliptically polarized antennas can
be obtained from Equation (21). This relation can be expressed in terms of measurable
quantities by use of Equations (17), (18), (20), and (23) and the definition for S, so that

_ A y2 (1+e2)(14€2) + 4 ece, + (1-e2)(1-€2)cos 2y
Pr = I;thGr (m) i r ir i r ’ (26)
' 2(1 +ei) (1+e12,)

where G, and G,. are the power gain of the transmitting and receiving antennas respec-
tively. ’lthe angle ¢ as previously defined is the angle between the major axes of the
polarization ellipses of the transmitting and receiving antennas. The sign of the term
4.:ier is chosen + or - according as the two antennas are polarized in the same or oppo-
site sense,

In a previous section of this report, the problems of determining conditions for com-
Plete rejection of an incident field by a receiving antenna and for maximum acceptance of
an incident field by a receiving antenna of constant receiving area were considered. It
Wwas shown that for these two cases the polarization efficiency f is respectively zero and
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unity. Hence for maximum power transfer between two antennas, Equation (26) reduceg
to

' 2
P, = P,GG.(\/4% R)® . (21)

This occurs when the two antennas have the same ellipticity, the same sense of polarizgy.
tion, and the major axes of their polarization ellipses are parallel. Let us now consider
the application of Equation (26) to other particular cases.

Case 1. Let both antennas be linearly polarized. Then e; = €, =oo , and Equation (26)
becomes

P, = PiGiG, (Acos¢/4n R)? .

If the linear polarizations are parallel, then i = 0 and the expression for P_. simplifieg
to the familiar form of the maximum power transfer equation for linearly po{arized
antennas. If the linear polarizations are mutually perpendicular, then y = n/2 and P.=0
as expected. In any event, if all the variables are fixed except the relative orientation of
the two linear polarizations, then P, varies as cos? {, a well known fact.

Case 2. Let both antennas be circularly polarized. Thene; = e, = 1. For the same
sense of polarization the plus sign is taken in Equation (26) so that

P. = PiGG, (\/4n R)®

Note that this expression is Equation (27). The result is a specific example of the general
statement made previously concerning the expression of P, for maximum power transfer,

If the antennas are circularly polarized in opposite senses, then the minus sign is
chosen and P, = 0, as expected.

Note that if one of the antennas is circularly polarized, the term in Equation (26) con-
taining y becomes zero. This is obvious from the fact that at least one of the polariza-
tion ellipses has become a circle, so that relative orientation of polarization becomes
meaningless.

Case 3. .Let one of the antennas be circularly polarized and the other linearly polarized.
Then either ¢; = 1 and e, =oo , or ej; =oo and e, = 1. In either case, Equation (26)
reduces to

v { P, = L PiGG, (A /4n R)?

(S

Thus only one-half of the maximum possible power is received, assuming of course pre-
scribed values of Py, G, Gy, M, and R.

RN A




APPENDIX I
Proof That: % =% & -

It is assumed that the antenna in question is connected to the generator by means of
a transmission line or waveguide which supports only a single propagating mode-at the
given frequency. At an arbitrary reference cross-section of the transmission line, volt-
age and current parameters may be introduced in the usual way. For the purpose of this
discussion all circuit elements which are on the opposite side of the reference cross-
section from the generator or receiver will be considered part of the antenna. It will
further be assumed that the generator or receiver as the case may be is matched to the
line, but that the line is not necessarily matched to the antenna in free space.

Introduce a rectangular coordinate system with origin 0 at an arbitrary point in front
of the antenna with the z-axis in the direction of interest for transmission and reception.
Let «x denote the input voltage to the receiver when a uniform plane wave with its k-
vector parallel to the x-axis, and with unit amplitude at 0 is incident on the antenna in
the direction of the z-axis. Let.+y be similarly defined. If an elliptically polarized plane
wave represented by £ =€y ix +Cy 1y at 0 is incident on the antenna from the same
direction, then by the superposition principle, the input voltage, ¥, to the receiver is
given by

‘V=gx»4x +gy ,dy
This may be written as /= &: where I:Ax ;;{ +4y ;5-7 .

Now let a second antenna be located at a distant point 0 on the z-axis. It will be
assumed that the field transmitted by the second antenna in the direction from 0" to 0 is
linearly polarized. It will further be assumed for this second antenna that both the an-
tenna and generator or receiver are matched to a line which supports only a single
propagating mode. In the same way as for the first antenna, a vector< may be associated
with the second antenna to represent the voltage received by the second when an ellipti-
cally polarized plane wave is incident upon it in the direction from 0 to 0”. Subscripts 1
and 2 will be used to distinguish between these two vectors. Two cases will now be con-
sidered. It will be assumed that antenna (2) is oriented so that the transmitted E-vector
is parallel to the k;axis in the first case, and parallel to thc y-axis in the second case_
The gorresgondimA' vectors for antenna (g) in these two cases will be denoted by ;= <, ix
and &, = <431y, Let g{q =9, ix and ¢2=92 Iy be the corresponding transmitting vectors
for antenna {2). Since tne orientation ofantenna(1) is not chapged, antenna (1) will be
represented by $1=4,y Ix +-4,y Iy and 1 =41x x +hy ly.

... Now let a unit voltage be impressed at the terminals of antenna (1), and let Pibe the
transmitted power. Then the input voltage to the receiver of antenna (2) is given by

1
vy (VB ST ) (e-ikR/R) 72 T
fqg ‘the first orientation of antenna (2), and by
: . 1 - -
v = (VP en/eT ) (e IR/R ) g2 2

for the second. LetI be the reflection coefficient at the terminals of antenna (1) when
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transmitting, and let Z, be the impedance of the line. If p= (1 +I")4(1 -T), and
r=Rep, then for unit input voltage at the terminals, P, = r/2 |p|” Z1. If we let
M= (-JkR/R)/ (47 Je /)2 , then %;and 77 can be represented as follows:

m
Y, =Tp] V% 71z 4,
, I

Similarly if a unit voltage is applied to the terminals of antenna (2) for the two orientg-
tions of antenna (2), then the input voltages to the receiver of antenna (1) are given re-
spectively by

Yy =Mar % [ [Tz =T 4/ /B
Y SMEE 1T, = Mg, 4 VT

where Z,is the impedance of the transmission line for antenna (2). It should be remem-
bered that these input voltages are the voltages that appear when the receivers have
impedances which are equal to the respective line impedances.
The voltages ‘1/2, 6}/2,, 7/1, and 7/;wi11 now be calculated by another method.
The terminal relations between antennas (1) and (2) can be represented for each of the
two orientations of antenna (2) by means of a four-terminal network. Thus
V=21l - Z1212,
% = 2,1, -2, 1,5
and ’\/1, Z’u I’l- Z,12 I'z »

4 ’ ’ ’
1/2 =2y, I, - Zzz I,z .

It is obvious that as the separation R between the antenna increases, then

Lim Z,, = Lim z,=0
Re=o0 R»©0
Lim Z,, = Lim Z;,=p2,
) R»o00 R+o0
H
Lim Z 5, = Lim Zhs = Zy s
Reo0 Reoc

Let antenna (1) transmit and antenna (2) receive. We find by solving for %and Kwhen
'[/1= ”]/1'= 1, and antenna (2) is terminated by an impedance, Z, that

‘1/2 = 2,,/2p2,
R>>1

?//

2

Z/lz/z pZ,
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{larly if antenna (2) transmits and antenna
4
14

Combining results, we find that for large R,

Z,,/(1 +p)Z,

ne

ML+ PNZ2 §2 4y = 2

" From Equations (28) we conclude that

Mm@ + plNZ, \?/241,‘ =2, =2mﬁ/1771 Z1x %2
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(1) receives, and antenna (1) is terminated

an impedance Z,, then for unit input voltage to antenna (2),

R>>1

ZIZ/(I +p)Z2 .

, (28)
12= 27}1'@@ Sy

Thus <4 x/Aly = %x/ 4 ¥ from which it follows that ,1; =T 51, where 7' is a constant.

(1 +p)Z, 2521 = 2|7f’llr_z—1% 7

fence (1 +P)WZ, 795 = ZI—%'-JI‘_Z—l e ;

and 7 l 2, I

-+ [

Zz ll + P”?’zl

Since the field transmitted by antenna (2) is linearly polarized, i follows by a well
known theorem that if a linearly polarized plane wave represented by € is incident upon

it, and if € is parallel to 72, then the received

power is given by

by - LB lgf A7/
On the other hand from the definition of 42, |’1/r| =|§_ ,22|= |E“ 4]
1

2 —
Hence Py = %‘8“112‘ /22, andlaiz'/'?zl =AMZ, [ 4nife) 2 .
Substituting in the expression for 171 we find
I’TI 27 ) A
=11 P
1 +ol amu /e

Nowl +p= 2/R(1 -I), and r = Re(l +M/1 -

Hence

17| =
smfuje

Now let £ =AF, "/./41r. Then if an elliptically
the received voltage '\/r is given by

z (1 -|r)

ry=a-lr’*yl-rf.

polarized field Z is incident on antenna (1),
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This concludes the proof of the theorem.

. * * % 5
\




APPENDIX II
Derivation of Errors in Measured Ellipticity
(nearly polarized Receiving Antenna

Consider first the possible error in the measured ellipticity if the receiving antenna,
hich is presumed to be linearly polarized, is not truly linear. Let,

e, = 20 log | tan |

ej =20 log tan ¢

enote respectively the ellipticities in db of the receiving antenna an of thg test antenna
hose ellipticity is being measured. Let oy = n/2 + 6, where -§28, 24, and

/4 204 <n/2. The angled will determine the maximum deviation of the receiving
tenna from linearity, and the values of & considered are small.

Since the receiving antenna is presumed to be linearly polarized, the ellipticity is
calculated from the ratio of the maximum to the minimum values of the power received.
rom Equation (24), this ratio is

f max  sin®(aj - §,)
= : o LA
I min cos2(ajy +8y)

l - coto, tan § 2
tanzai< i r
1 - tanog tan 3

The function on the right-hand side has a maximum value when 3, =& and a minimum

If we now assume in addition a maximum error of € db in any two readings due to
instrumentation errors, and if we let e represent the measured ellipticity in db, then

e = 20 log tan oy + 20 log <

) 1 - cot aj tand
1 max + €

1 - tan aj tand

s

=e; + 8.69 tan é(tan o - cotay) + € ,
provided tan oty tan § <<1. Similarly

emin = € - 8-69 tan §(tanoy - cotaj) - €

For given values"of dand €, epax and epn iy can be plotteé as functions of the trué

ellipticity e, . Then by graphical inversion, the range of possible values of ej for a
given measured value of e can be determined.

23
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Circularly Polarized Receiving Antennas

Consider now the possible error in the measured ellipticity if a pair of receijyj
antennas are used which are presumed to be right- and left-handed circularly polai.l;g
but which are not truly circular. Let eg, ef, and e; denote respectively the ellipticity

in db of the right- and left-handed circularly polarized receiving antennas and of th
test antenna. e

Let e; = 20 log |tancj | , eg = 20 log |tanog |, er =20 log |tan oy, | .

Finally, leto; =m/4 + 8;, ap =m/4 + ég, @ = 37/4 - 0L, where oéc:fa.

This time the angle § is a measure of the greatest deviation from circularity of the

receiving antennas.

If Pgand Py, denote the powers receivedby the right- and left-handed circularly polarize
antennas respectively, then the measured value of e in db is found from Equation (10)

be
1+ / PR;PL
e = 20 log tan
1 -/ Pg/Py

e of e from the true value ej, it is neces-
d value of PR/Py, from the true value

Thus to find the deviation of the measured valu
sary to investigate the deviation of the measure

that would be obtained if there were no sources of error.
n efficiencies corresponding to the right- and

gnitudes of their respec-
the ratio PR/Pp, 1

Let fg and f1, denote the polarizatio
left-handed receiving antennas, and let hR and hy, denote the ma
tive reception vectors. Then if there were no instrumentation errors,

would be given by
PR/Pp = hk R/ ff, (29) §
the quantity on the ;

the maximum and minimum values of
tennas are considered,

Let us now determine
ly the orientation of the receiving an

right of Equation (29). ¥ on
then by Equation (24)

fr max = 082 (24 '“R)=°°Sz(ﬂi-6R),
fR min = sin (ay +oR) = cos? (81 + dg ) > .‘
fLmax=°°SZ (o5 -ap) = sinZ (65 +46L) > '
4
fLmin"51“2(0!1+0!L)=sinz(ai -0L) - ?
At this point it shall be assumed for simplicity that 61 > 6> 5
L

na under test is not more nearly circular than either of the

This means that the anten
gure 6 this restriction was dropped.) Under the

receiving antennas. (In preparing Fi
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B /
24 \®
\PR/PL = 20 tog cot 6, ) /

IN db

3 b1
/
I

ELLIPTICITY

4
= 20 log tan (7" Gl)

\\

N

e — - —

|
|
|
N
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PARAMETER o, IN DEGREES

-
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-

Figure 6 - Ellipticity as a function of errors
using circular components

above assumption, if the variation of the ratio fR/fL with § gand 4y, is also included,
it can be shown that

2 2
£ cos® (85 - 6R) ¢ cos (65 - 6)
g < > R < > i = cot? (54 - 0) 1
fL sin® (6 - GL) sin“ (64 - 5) L
cos2(6; + & cos2 (6 + 8
g > Z(1 R > Z(1+ )=cot2(61+6)
fL sin (61 + GL) sin (51 + 6)

Now let € denote the db difference in gain between the two receiving antennas, and
let € denote, as before, the maximum difference in db of any two readings due to in-
strumentation errors. If (PR/P1, )Jmax and (PR/PL )min denote the maximum and mini-
mum possible measured values of the ratio PR/PL, then it follows from Equations (29)
and (30) that
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10 log (PR/PL Jmax = 201og cot (i -8) +¢' + ¢

10 tog (PR/P[, Jmin = 20logcot (8§ +8) -¢' - €.

On the other hand, if no errors are present,

10 log (PR/Py, ) = 20 log cot d;

e; = 20 logtan (%-pdi) ;

it is seen that e; and PR/PL are simply related with the aid of the parameter d; . Hence
if 2 number § ' is determined such that 20 log cot (8 ; -§) +€' +e= 20 log cot §', then
the minimum measured value of ellipticity is given by :

€mnin = 20 log tan (% +4")

In a similar manner ey, ,y may be determined.

With the aid of the above equations, e,y and ey ;, may be determined for any given
value of e; by a simple graphical procedure as illustrated in Figure 6. Find the point on |
curve (A) for which e = e; . The abscissa of this point is 8; . Now find the point on curve j
(B) whose abscissa is §; - 0 . Increase the ordinate of this point by an amount €' +eand ]
find the point on curve (B) which has this new ordinate. The abscissa of this point is § '.
Finally e, i, is obtained from curve (A) by finding the point on it with abscissa é'. A
similar procedure determines epax -

Thus, as was the case in the first method using linear polarization, the maximum and
minimum possible measured values of ellipticity are obtained in terms of the true elliptic- j
ity. Again in the same way one can obtain from these results the range within which the
true ellipticity lies when the measured value of ellipticity is given.
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